Complex Analysis: Final Exam

Aletta Jacobshal 01, Wednesday 27 January 2016, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Do not forget to very clearly write your full name and student number on each answer sheet and on the envelope. Do not seal the ennvelope.
- The exam consists of 6 questions; answer all of them.
- The total number of points is 100 and 10 points are "free". The exam grade is the total number of points divided by 10 .
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (12 points)

(a) (6 points) Verify that the exponential function $f(z)=e^{z}$ satisfies the Cauchy-Riemann equations.
(b) (6 points) Show that the Taylor series of the exponential function $f(z)=e^{z}$ around $z_{0} \in \mathbb{C}$ is given by

$$
e^{z}=e^{z_{0}} \sum_{j=0}^{\infty} \frac{\left(z-z_{0}\right)^{j}}{j!} .
$$

What is the domain where the Taylor series of e^{z} around z_{0} converges? [If necessary, you can use without proof the Taylor series of e^{z} around 0.]

Question 2 (18 points)

Consider the function

$$
f(z)=\frac{e^{i z}}{z^{2}-4}
$$

(a) (6 points) Compute the residue of $f(z)$ at each one of the singularities of $f(z)$.
(b) (12 points) Compute the principal value

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}-4} d x
$$

Question 3 (14 points)

Consider the branch $f(z)=e^{\frac{1}{3} \mathcal{L}_{0}(z)}$ of the cubic root function $z^{\frac{1}{3}}$. The branch $\mathcal{L}_{0}(z)$ of the logarithm has a branch cut along the positive real axis.
(a) (6 points) Compute $f(-i)$ and $f^{\prime}(-i)$. Write the results in Cartesian form.
(b) (8 points) Evaluate the $\operatorname{limits} \lim _{\varepsilon \rightarrow 0^{+}} f(x+i \varepsilon)$ and $\lim _{\varepsilon \rightarrow 0^{+}} f(x-i \varepsilon)$ for $x>0$. Express the limits in terms of $\sqrt[3]{x}$, that is, the positive real cubic root of the real number $x>0$.

Question 4 (14 points)

Consider the function

$$
f(z)=\frac{1}{z-1}+\frac{2}{2-z} .
$$

(a) (4 points) Determine the singularities of $f(z)$ and their type.
(b) (10 points) Compute the Laurent series at 0 of the function in the domain $1<|z|<2$.

Question 5 (16 points)

(a) (6 points) Given the function

$$
f(z)=\frac{(z-4)(z-1)^{2} \sin z}{z^{2}+1},
$$

evaluate the integral

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

where C is the positively oriented circular contour with $|z|=2$.
(b) (10 points) Use Rouché's theorem to show that the polynomial $P(z)=\varepsilon z^{3}+z^{2}+1$, where $0<\varepsilon<3 / 8$, has exactly 2 roots in the disk $|z|<2$.

Question 6 (16 points)

(a) (8 points) Show that

$$
\left|\int_{C} \frac{e^{z}}{z+1} d z\right| \leq 2 \pi e^{2}
$$

where C is the positively oriented circle $|z-1|=1$.
(b) (8 points) Suppose that $f(z)$ is an analytic function in a domain D and it has no zeros in D. Show that if $|f(z)|$ attains its minimum in D (that is, there exists a point $z_{0} \in D$ such that $\left|f\left(z_{0}\right)\right| \leq|f(z)|$ for all $\left.z \in D\right)$, then $f(z)$ is constant.

End of the exam (Total: 90 points)

